Renewable energy
Written by Omnia Ibrahim Hassanin
Renewable energy is energy derived from natural sources that are replenished at a higher rate than they are consumed. Sunlight and wind, for example, are such sources that are constantly being replenished. Renewable energy sources are plentiful and all around us. Fossil fuels – coal, oil and gas – on the other hand, are non-renewable resources that take hundreds of millions of years to form. Fossil fuels, when burned to produce energy, cause harmful greenhouse gas emissions, such as carbon dioxide. Generating renewable energy creates far lower emissions than burning fossil fuels. Transitioning from fossil fuels, which currently account for the lion’s share of emissions, to renewable energy is key to addressing the climate crisis. Renewables are now cheaper in most countries, and generate three times more jobs than fossil fuels.
Here are a few common sources of renewable energy:
SOLAR ENERGY
Solar energy is the most abundant of all energy resources and can even be harnessed in cloudy weather. The rate at which solar energy is intercepted by the Earth is about 10,000 times greater than the rate at which humankind consumes energy. Solar technologies can deliver heat, cooling, natural lighting, electricity, and fuels for a host of applications. Solar technologies convert sunlight into electrical energy either through photovoltaic panels or through mirrors that concentrate solar radiation.
Although not all countries are equally endowed with solar energy, a significant contribution to the energy mix from direct solar energy is possible for every country. The cost of manufacturing solar panels has plummeted dramatically in the last decade, making them not only affordable but often the cheapest form of electricity. Solar panels have a lifespan of roughly 30 years, and come in variety of shades depending on the type of material used in manufacturing. WIND ENERGY
Wind energy harnesses the kinetic energy of moving air by using large wind turbines located on land (onshore) or in sea- or freshwater (offshore). Wind energy has been used for millennia, but onshore and offshore wind energy technologies have evolved over the last few years to maximize the electricity produced – with taller turbines and larger rotor diameters.
Though average wind speeds vary considerably by location, the world’s technical potential for wind energy exceeds global electricity production, and ample potential exists in most regions of the world to enable significant wind energy deployment. GEOTHERMAL ENERGY
Geothermal energy utilizes the accessible thermal energy from the Earth’s interior. Heat is extracted from geothermal reservoirs using wells or other means. HYDROPOWER:
Hydropower harnesses the energy of water moving from higher to lower elevations. It can be generated from reservoirs and rivers. Reservoir hydropower plants rely on stored water in a reservoir, while run-of-river hydropower plants harness energy from the available flow of the river.
Hydropower reservoirs often have multiple uses – providing drinking water, water for irrigation, flood and drought control, navigation services, as well as energy supply. Prior to the development of coal in the mid 19th century, nearly all energy used was renewable. The oldest known use of renewable energy, in the form of traditional biomass to fuel fires, dates from more than a million years ago. The use of biomass for fire did not become commonplace until many hundreds of thousands of years later. Probably the second oldest usage of renewable energy is harnessing the wind in order to drive ships over water. This practice can be traced back some 7000 years, to ships in the Persian Gulf and on the Nile. From hot springs, geothermal energy has been used for bathing since Paleolithic times and for space heating since ancient Roman times.Moving into the time of recorded history, the primary sources of traditional renewable energy were human labor, animal power, water power, wind, in grain crushing windmills, and firewood, a traditional biomass.
In 1885, Werner von Siemens, commenting on the discovery of the photovoltaic effect in the solid state, wrote:
In conclusion, I would say that however great the scientific importance of this discovery may be, its practical value will be no less obvious when we reflect that the supply of solar energy is both without limit and without cost, and that it will continue to pour down upon us for countless ages after all the coal deposits of the earth have been exhausted and forgotten.
Max Weber mentioned the end of fossil fuel in the concluding paragraphs of his Die protestantische Ethik und der Geist des Kapitalismus (The Protestant Ethic and the Spirit of Capitalism), published in 1905. Development of solar engines continued until the outbreak of World War I. The importance of solar energy was recognized in a 1911 Scientific American article: “in the far distant future, natural fuels having been exhausted [solar power] will remain as the only means of existence of the human race”.
The theory of peak oil was published in 1956. In the 1970s environmentalists promoted the development of renewable energy both as a replacement for the eventual depletion of oil, as well as for an escape from dependence on oil, and the first electricity-generating wind turbines appeared. Solar had long been used for heating and cooling, but solar panels were too costly to build solar farms until 1980. Uses
Renewable energy often displaces conventional fuels in four areas: electricity generation, hot water/space heating, transportation, and rural (off-grid) energy services.
Power generation
More than a quarter of electricity is generated from renewables as of 2021.[51]
Heating and cooling
Solar water heating makes an important contribution to renewable heat in many countries, most notably in China, which now has 70% of the global total (180 GWth). Most of these systems are installed on multi-family apartment buildings and meet a portion of the hot water needs of an estimated 50–60 million households in China. Worldwide, total installed solar water heating systems meet a portion of the water heating needs of over 70 million households. In Sweden, national use of biomass energy has surpassed that of oil. Heat pumps provide both heating and cooling, and also flatten the electric demand curve and are thus an increasing priority renewable thermal energy is also growing rapidly. About 10% of heating and cooling energy is from renewables.
Transportation:
One of the efforts to decarbonize transportation is the increased use of electric vehicles (EVs). Despite that and the use of biofuels, such as biojet, less than 4% of transport energy is from renewables.occasionally hydrogen fuel cells are used for heavy transport.
Some creative ideas for preparation of sources of renewable energy:
The creation of bank of photons from the solar panels that can be used to be an electrical resource and making the solar laser panels that can be used in green houses to make the photosynthesis process within high ratio to increase the production of corps and by the use of the wind miles to run the factories in the aquacultures for fish manufacture .
ginal onrly, Jocelyn (23 February 2017). “Biomass subsidies ‘not fit for purpose’, says Chatham House”. Carbon Brief Ltd © 2020 – Company No. 07222041. Archived from the original on 6 November 2020. Retrieved 31 October 2020.
Harvey, Chelsea; Heikkinen, Niina (23 March 2018). “Congress Says Biomass Is Carbon Neutral but Scientists Disagree – Using wood as fuel source could actually increase CO2 emissions”. Scientific American. Archived from the original on 1 November 2020. Retrieved 31 October 2020.
Alazraque-Cherni, Judith (1 April 2008). “Renewable Energy for Rural Sustainability in Developing Countries”. Bulletin of Science, Technology & Society. 28 (2): 105–114. doi:10.1177/0270467607313956. S2CID 67817602. Archived from the original on 19 March 2021. Retrieved 2 December 2020.
World Energy Assessment (2001). Renewable energy technologies Archived 9 June 2007 at the Wayback Machine, p. 221.
Armaroli, Nicola; Balzani, Vincenzo (2011). “Towards an electricity-powered world”. Energy and Environmental Science. 4 (9): 3193–3222. doi:10.1039/c1ee01249e.
Armaroli, Nicola; Balzani, Vincenzo (2016). “Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition”. Chemistry – A European Journal. 22 (1): 32–57. doi:10.1002/chem.201503580. PMID 26584653.
Volker Quaschning, Regenerative Energiesysteme. Technologie – Berechnung – Simulation. 8th. Edition. Hanser (Munich) 2013, p. 49.
REN21. “Renewables 2022 – Global Status Report” (renewable energies): 44. Retrieved 5 September 2022.
REN21 Renewables Global Status Report 2021.
“Renewables – Global Energy Review 2021 – Analysis”. IEA. Archived from the original on 23 November 2021. Retrieved 22 November 2021.
“Renewable Energy and Jobs – Annual Review 2020”. irena.org. Archived from the original on 6 December 2020. Retrieved 2 December 2020.
“Global renewable energy trends”. Deloitte Insights. Archived from the original on 29 January 2019. Retrieved 28 January 2019.
“Renewable Energy Now Accounts for a Third of Global Power Capacity”. irena.org. Archived from the original on 2 April 2019. Retrieved 2 December 2020.
IEA (2020). Renewables 2020 Analysis and forecast to 2025 (Report). p. 12. Archived from the original on 26 April 2021. Retrieved 27 April 2021.
Ritchie, Hannah; Roser, Max; Rosado, Pablo (28 November 2020). “Energy”. Our World in Data.
Sensiba, Jennifer (28 October 2021). “Some Good News: 10 Countries Generate Almost 100% Renewable Electricity”. CleanTechnica. Archived from the original on 17 November 2021. Retrieved 22 November 2021.
REN21 Renewables Global Futures Report 2017.
Bogdanov, Dmitrii; Gulagi, Ashish; Fasihi, Mahdi; Breyer, Christian (1 February 2021). “Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination”. Applied Energy. 283: 116273. doi:10.1016/j.apenergy.2020.116273. ISSN 0306-2619.
Teske, Sven, ed. (2019). Achieving the Paris Climate Agreement Goals. doi:10.1007/978-3-030-05843-2. ISBN 978-3-030-05842-5. S2CID 198078901.
Jacobson, Mark Z.; von Krauland, Anna-Katharina; Coughlin, Stephen J.; Dukas, Emily; Nelson, Alexander J. H.; Palmer, Frances C.; Rasmussen, Kylie R. (2022). “Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries”. Energy & Environmental Science. 15 (8): 3343–3359. doi:10.1039/D2EE00722C. ISSN 1754-5692. S2CID 250126767.
International Energy Agency (2012). “Energy Technology Perspectives 2012”. Archived from the original on 28 May 2020. Retrieved 2 December 2020.
Timperley, Jocelyn (20 October 2021). “Why fossil fuel subsidies are so hard to kill”. Nature. 598 (7881): 403–405. Bibcode:2021Natur.598..403T. doi:10.1038/d41586-021-02847-2. PMID 34671143. S2CID 239052649. Archived from the original on 17 November 2021. Retrieved 22 November 2021.
“Global Trends in Sustainable Energy Investment 2007: Analysis of Trends and Issues in the Financing of Renewable Energy and Energy Efficiency in OECD and Developing Countries” (PDF). unep.org. United Nations Environment Programme. 2007. p. 3. Archived (PDF) from the original on 4 March 2016. Retrieved 13 October 2014.
Sütterlin, B.; Siegrist, Michael (2017). “Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power”. Energy Policy. 106: 356–366. doi:10.1016/j.enpol.2017.03.061.
“Renewable Power – Analysis”. IEA. Archived from the original on 22 November 2021. Retrieved 22 November 2021.
“2022-2023 EIB Climate Survey, part 1 of 2: Majority of Europeans say the war in Ukraine and high energy prices should accelerate the green transition”. EIB.org. Retrieved 17 November 2022.
إقرأ المزيد
« تعديل السلوك البيئي » .. دراسة للباحثة أمنية حسانين إبراهيم